Science Curriculum Map Grade 4 Science

RED = prioritized standards; BLACK = supporting standards; BLUE = Prior grade prerequisite standards

There are no Grade 3 Science standards that impact Grade 4 Science standards

4 th Grade				
1st Nine Weeks 2nd Nine Weeks				
Water & Weather	Solar System (3) & Earth & Moon (4)	Light		
6 weeks (4 weeks if alternating with SS)	7 weeks (4 weeks if alternating with SS	3 weeks 1.5 weeks alt		
S4E3. Obtain, evaluate, and communicate information to	S4E1. Obtain, evaluate, and communicate information to	S4P1. Obtain, evaluate, and		
demonstrate the water cycle.	compare and contrast the physical attributes of stars and	communicate information		
a. Plan and carry out investigations to observe the flow of	planets.	about the nature of light and		
energy in water as it changes states from solid (ice) to liquid	a. Ask questions to compare and contrast technological advances	how light interacts with		
(water) to gas (water vapor) and changes from gas to liquid to	that have changed the amount and type of information on distant	objects.		
solid.	objects in the sky.	a. Plan and carry out		
b. Develop models to illustrate multiple pathways water may	b. Construct an argument on why some stars (including the	investigations to observe and		
take during the water cycle (evaporation, condensation, and	Earth's sun) appear to be larger or brighter than others.	record how light interacts with		
precipitation). (Clarification statement: Students should	(Clarification statement: Differences are limited to distance and	various materials to classify		
understand that the water cycle does not follow a single	size, not age or stage of evolution.)	them as opaque, transparent,		
pathway.)	c. Construct an explanation of the differences between stars and	or translucent.		
	planets.	b. Plan and carry out		
S4E4. Obtain, evaluate, and communicate information to	d. Evaluate strengths and limitations of models of our solar	investigations to describe the		
predict weather events and infer weather patterns using	system in describing relative size, order, appearance and	path light travels from a light		
weather charts/maps and collected weather data.	composition of planets and the sun. (Clarification statement:	source to a mirror and how it is		
a. Construct an explanation of how weather instruments	Composition of planets is limited to rocky vs. gaseous.)	reflected by the mirror using		
(thermometer, rain gauge, barometer, wind vane, and		different angles.		
anemometer) are used in gathering weather data and making	S4E2. Obtain, evaluate, and communicate information to model	c. Plan and carry out an		
forecasts.	the effects of the position and motion of the Earth and the	investigation utilizing everyday		
b. Interpret data from weather maps, including fronts (warm,	moon in relation to the sun as observed from the Earth.	materials to explore examples		
cold, and stationary), temperature, pressure, and precipitation	a. Develop a model to support an explanation of why the length	of when light is refracted.		
to make an informed prediction about tomorrow's weather.	of day and night change throughout the year.	(Clarification statement:		
c. Ask questions and use observations of cloud types (cirrus,	b. Develop a model based on observations to describe the	Everyday materials could		
stratus, and cumulus) and data of weather conditions to predict	repeating pattern of the phases of the moon (new, crescent,	include prisms, eyeglasses, and		
weather events.	quarter, gibbous, and full).	a glass of water.)		
d. Construct an explanation based on research to communicate	c. Construct an explanation of how the Earth's orbit, with its			
the difference between weather and climate.	consistent tilt, affects seasonal changes.			

Science Curriculum Map Grade 4 Science

RED = prioritized standards; BLACK = supporting standards; BLUE = Prior grade prerequisite standards

There are no Grade 3 Science standards that impact Grade 4 Science standards

4 th Grade				
3 rd Nine Weeks		4 th Nine Weeks		
Sound 3 Weeks	Force & Motion 5 weeks	Ecosystems & Energy 6 weeks	Preview 5 th Grade Science	
1.5 weeks if alternating with SS	4 weeks if alternating with SS	4 weeks if alternating with SS		
S4P2. Obtain, evaluate, and	S4P3. Obtain, evaluate, and	S4L1. Obtain, evaluate, and communicate information	If time permits,	
communicate information about	communicate information about the	about the roles of organisms and the flow of energy	preview the 5 th	
how sound is produced and	relationship between balanced and	within an ecosystem.	grade standards.	
changed and how sound and/or	unbalanced forces.			
light can be used to communicate.		a. Develop a model to describe the roles of producers,		
a. Plan and carry out an	a. Plan and carry out an investigation on	consumers, and decomposers in a community.		
investigation utilizing everyday	the effects of balanced and unbalanced	(Clarification statement: Students are not expected to		
objects to produce sound and	forces on an object and communicate	identify the different types of consumers – herbivores,		
predict the effects of changing the	the results.	carnivores, omnivores and scavengers.)		
strength or speed of vibrations.	b. Construct an argument to support the	b. Develop simple models to illustrate the flow of energy		
b. Design and construct a device to	claim that gravitational force affects the	through a food web/food chain beginning with sunlight		
communicate across a distance	motion of an object.	and including producers, consumers, and decomposers.		
using light and/or sound.	c. Ask questions to identify and explain	c. Design a scenario to demonstrate the effect of a		
	the uses of simple machines (lever,	change on an ecosystem. (Clarification statement: Include		
	pulley, wedge, inclined plane, wheel and	living and non-living factors in the scenario.)		
	axle, and screw) and how forces are	d. Use printed and digital data to develop a model		
	changed when simple machines are used	illustrating and describing changes to the flow of energy		
	to complete tasks. (Clarification	in an ecosystem when plants or animals become scarce,		
	statement: The use of mathematical	extinct or over-abundant.		
	formulas is not expected.)			